Applications Of Derivatives Question 218

Question: The radius of the cylinder of maximum volume, which can be inscribed in a sphere of radius R is

[AMU 1999]

Options:

A) $ \frac{2}{3}R $

B) $ \sqrt{\frac{2}{3}}R $

C) $ \frac{3}{4}R $

D) $ \sqrt{\frac{3}{4}}R $

Show Answer

Answer:

Correct Answer: B

Solution:

If r be the radius and h the height, then from the figure,
$ r^{2}+{{( \frac{h}{2} )}^{2}}=R^{2} $

therefore $ h^{2}=4(R^{2}-r^{2}) $
Now, $ V=\pi r^{2}h $ = $ 2\pi r^{2}\sqrt{R^{2}-r^{2}} $
\ $ \frac{dV}{dr}=4\pi r\sqrt{R^{2}-r^{2}}+2\pi r^{2}.\frac{1}{2}\frac{(-2r)}{\sqrt{R^{2}-r^{2}}} $
For max. or min., $ \frac{dV}{dr}=0 $

therefore $ 4\pi r\sqrt{R^{2}-r^{2}}=\frac{2\pi r^{3}}{\sqrt{R^{2}-r^{2}}} $

therefore $ 2(R^{2}-r^{2})=r^{2} $

therefore $ 2R^{2}=3r^{2} $

therefore $ r=\sqrt{\frac{2}{3}}R $

therefore $ \frac{d^{2}V}{dr^{2}}=-ve $ .

Hence V is max., when $ r=\sqrt{\frac{2}{3}}R $ .