Applications Of Derivatives Question 22

Question: The largest term in the sequence $ a_{n}=\frac{n^{2}}{n^{3}+200} $ is given by

Options:

A) $ \frac{529}{49} $

B) $ \frac{8}{89} $

C) $ \frac{49}{543} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Consider the function $ f(x)=\frac{x^{2}}{(x^{3}+200)} $ …..(i) $ f’(x)=x\frac{(400-x^{3})}{{{(x^{3}+200)}^{2}}}=0 $ When $ x={{(400)}^{1/3}}\ ,\ (\because x\ne 0) $

$ x={{(400)}^{1/3}}-h\Rightarrow f’(x)>0 $

$ x={{(400)}^{1/3}}+h\Rightarrow f’(x)<0 $

$ \therefore $ $ f(x) $ has maxima at $ x={{(400)}^{1/3}} $

Since $ 7<{{(400)}^{1/3}}<8, $ either $ a_7 $ or $ a_8 $ is the greatest term of the sequence.

$ \because a_7=\frac{49}{543} $ and $ a_8=\frac{8}{89} $ and $ \frac{49}{543}>\frac{8}{89} $

$ \therefore $ $ a_7=\frac{49}{543} $ is the greatest term.