Applications Of Derivatives Question 22

Question: The largest term in the sequence $ a_{n}=\frac{n^{2}}{n^{3}+200} $ is given by

Options:

A) $ \frac{529}{49} $

B) $ \frac{8}{89} $

C) $ \frac{49}{543} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Consider the function $ f(x)=\frac{x^{2}}{(x^{3}+200)} $ …..(i) $ f’(x)=x\frac{(400-x^{3})}{{{(x^{3}+200)}^{2}}}=0 $ When $ x={{(400)}^{1/3}}\ ,\ (\because x\ne 0) $

$ x={{(400)}^{1/3}}-h\Rightarrow f’(x)>0 $

$ x={{(400)}^{1/3}}+h\Rightarrow f’(x)<0 $

$ \therefore $ $ f(x) $ has maxima at $ x={{(400)}^{1/3}} $

Since $ 7<{{(400)}^{1/3}}<8, $ either $ a_7 $ or $ a_8 $ is the greatest term of the sequence.

$ \because a_7=\frac{49}{543} $ and $ a_8=\frac{8}{89} $ and $ \frac{49}{543}>\frac{8}{89} $

$ \therefore $ $ a_7=\frac{49}{543} $ is the greatest term.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें