Applications Of Derivatives Question 221

Question: If $ y=4x-5 $ is tangent to the curve $ y^{2}=px^{3}+q $ at (2, 3), then

[IIT 1994; UPSEAT 2001]

Options:

A) $ p=2,q=-7 $

B) $ p=-2,q=7 $

C) $ p=-2,q=-7 $

D) $ p=2,q=7 $

Show Answer

Answer:

Correct Answer: A

Solution:

Given curve $ y^{2}=px^{3}+q $ …………..(i)
Differentiate with respect to x, $ 2y.\frac{dy}{dx}=3px^{2} $

therefore $ \frac{dy}{dx}=\frac{3p}{2}( \frac{x^{2}}{y} ) $

$ \therefore {{| \frac{dy}{dx} |} _{2,3}}=\frac{3p}{2}\times \frac{4}{3}=2p $
For given line, slope of tangent $ =4 $

$ \therefore 2p=4 $

therefore $ p=2 $
From equation (i), $ 9=2\times 8+q $

therefore $ q=-7 $ .