Applications Of Derivatives Question 224

The radius of a right circular cylinder increases at the rate of 0.1 cm/min, and the height decreases at the rate of 0.2 cm/min. the rate of change of the volume of the cylinder, in $ cm^{3} $ /min when the radius is 2 cm and the height is 3 cm is

Options:

A) $ -2\pi $

B) $ -\frac{8\pi }{5} $

C) $ -\frac{3\pi }{5} $

D) $ \frac{2\pi }{5} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Given $ V=\pi r^{2}h. $

Differentiating both sides, we get $ \frac{dV}{dt}=\pi ( r^{2}\frac{dh}{dt}+2r\frac{dr}{dt}h )=\pi r( r\frac{dh}{dt}+2h\frac{dr}{dt} ) $

$ \frac{dr}{dt}=\frac{1}{10} $ and $ \frac{dh}{dt}=\frac{2}{10} $

$ \frac{dV}{dt}=\pi r( r( -\frac{2}{10} )+2h( \frac{1}{10} ) )=\frac{\pi r}{5}(-r+h) $

Thus, when r=2 and h=3. $ \frac{dV}{dt}=\frac{\pi (2)}{5}(-2+3)=\frac{2\pi }{5} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें