Applications Of Derivatives Question 228

Question: The point(s) on the curve $ y^{3}+3x^{2}=12y $ where the tangent is vertical (parallel to y-axis), is (are)

[IIT Screening 2002]

Options:

A) $ ( \pm \frac{4}{\sqrt{3}},-2 ) $

B) $ ( \pm \frac{\sqrt{11}}{3},1 ) $

C) $ (0,,0) $

D) $ ( \pm \frac{4}{\sqrt{3}},2 ) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ y^{3}+3x^{2}=12y $

therefore $ 3y^{2},.,\frac{dy}{dx}+6x=12,.,\frac{dy}{dx} $

therefore $ \frac{dy}{dx}(3y^{2}-12)+6x=0 $

therefore $ \frac{dy}{dx}=\frac{6x}{12-3y^{2}} $

therefore $ \frac{dx}{dy}=\frac{12-3y^{2}}{6x} $
Since tangent is parallel to y-axis

$ \therefore $ $ \frac{dx}{dy}=0 $

therefore $ 12-3y^{2}=0 $ or $ y=\pm 2 $ .
Then $ x=\pm \frac{4}{\sqrt{3}} $ . At $ ( \pm \frac{4}{\sqrt{3}},,-2 ); $ the equation of curve doesn-t satisfy.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें