Applications Of Derivatives Question 231

Question: N characters of information are held on magnetic tape, in batches of x characters each; the batch processing time is $ \alpha +\beta x^{2} $ seconds; $ \alpha $ and $ \beta $ are constants. The optimal value of x for fast processing is

[MNR 1986]

Options:

A) $ \frac{\alpha }{\beta } $

B) $ \frac{\beta }{\alpha } $

C) $ \sqrt{\frac{\alpha }{\beta }} $

D) $ \sqrt{\frac{\beta }{\alpha }} $

Show Answer

Answer:

Correct Answer: C

Solution:

Here number of batches $ =\frac{N}{x} $ and time per batch $ =(\alpha +\beta x^{2}), $ second

$ \therefore $ Total processing time $ T=( \frac{N}{x} ),(\alpha +\beta x^{2})=N( \frac{\alpha }{x}+\beta x )second $
For fast processing T must be least,

$ \therefore \frac{dT}{dx}=N( -\frac{\alpha }{x^{2}}+\beta ),;\ \ \frac{d^{2}T}{dx^{2}}=\frac{2N\alpha }{x^{3}} $

For maxima or minima of $ T,\ \ \frac{dT}{dx}=0\Rightarrow x=\sqrt{( \frac{\alpha }{\beta } )} $

For $ x=\sqrt{( \frac{\alpha }{\beta } )},\frac{d^{2}T}{dx^{2}} $ is + $ ve\ \ i.e.,>0 $

$ \therefore $ T has minima for $ x=\sqrt{( \frac{\alpha }{\beta } )} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें