Applications Of Derivatives Question 233

Question: On the interval [0, 1], the function $ x^{25}{{(1-x)}^{75}} $ takes its maximum value at the point

[IIT 1995]

Options:

A) 0

B) 1/2

C) 1/3

D) ¼

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=x^{25}{{(1-x)}^{75}} $

$ f’(x)=x^{25}(75){{(1-x)}^{74}}(-1)+25x^{24}{{(1-x)}^{75}} $
For maxima and minima,
$ -75x^{25}{{(1-x)}^{74}}+25x^{24}{{(1-x)}^{75}}=0 $

therefore $ 25x^{24}{{(1-x)}^{74}}[(1-x)-3x]=0 $

therefore Either $ x=0 $ or $ x=1 $ or $ x=\frac{1}{4} $
At $ x=\frac{1}{4},\ \ f’,( \frac{1}{4}-h )>0 $ and $ f’( \frac{1}{4}+h )<0 $

$ \therefore f(x) $ is maximum at $ x=\frac{1}{4} $ .
Trick: Check with the options.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें