Applications Of Derivatives Question 233

Question: On the interval [0, 1], the function $ x^{25}{{(1-x)}^{75}} $ takes its maximum value at the point

[IIT 1995]

Options:

A) 0

B) 1/2

C) 1/3

D) ΒΌ

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=x^{25}{{(1-x)}^{75}} $

$ f’(x)=x^{25}(75){{(1-x)}^{74}}(-1)+25x^{24}{{(1-x)}^{75}} $
For maxima and minima,
$ -75x^{25}{{(1-x)}^{74}}+25x^{24}{{(1-x)}^{75}}=0 $

therefore $ 25x^{24}{{(1-x)}^{74}}[(1-x)-3x]=0 $

therefore Either $ x=0 $ or $ x=1 $ or $ x=\frac{1}{4} $
At $ x=\frac{1}{4},\ \ f’,( \frac{1}{4}-h )>0 $ and $ f’( \frac{1}{4}+h )<0 $

$ \therefore f(x) $ is maximum at $ x=\frac{1}{4} $ .
Trick: Check with the options.



sathee Ask SATHEE