Applications Of Derivatives Question 234

Question: The function $ f(x)=\int\limits_{-1}^{x}{t(e^{t}-1)(t-1){{(t-2)}^{3}}{{(t-3)}^{5}}}dt $ has a local minimum at x =

[IIT 1999]

Options:

A) 0

B) 1

C) 2

D) 3

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)=\int_{-1}^{x}{t(e^{t}-1)(t-1){{(t-2)}^{3}}{{(t-3)}^{5}}}dt $

$ \therefore f’(x)=x(e^{x}-1)(x-1){{(x-2)}^{3}}{{(x-3)}^{5}} $
For local minima, slope i.e. $ f’(x) $ should change sign from $ -ve $ to $ +ve $ .
$ f’(x)=0\Rightarrow x=0,,1,,2,,3 $
If $ x=0-h, $ where h is a very small number, then
$ f’(x)=(-)(-)(-1)(-1)(-1)=-ve $
If $ x=0+h $ ; $ f’(x)=(+)(+)(-)(-1)(-1)=-ve $

Hence at $ x=0 $ neither maxima nor minima.
If $ x=1-h $

$ f’(x)=(+)(+)(-)(-1)(-1)=-ve $
If $ x=1+h $ ; $ f’(x)=(+)(+)(+)(-1)(-1)=+ve $

Hence at $ x=1 $ there is a local minima.
If $ x=2-h $ ; $ f’(x)=(+)(+1)(+)(-)(-)=+ve $
If $ x=2+h $ ; $ f’(x)=(+)(+)(+)(+)(-1)=-ve $

Hence at $ x=2 $ there is a local maxima.
If $ x=3-h $ ; $ f’(x)=(+)(+)(+)(+)(-)=-ve $
If $ x=3+h $ ; $ f’(x)=(+)(+)(+)(+)(+)=+ve $

Hence at $ x=3 $ there is a local minima.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें