Applications Of Derivatives Question 236
Question: The maximum value of exp $ (2+\sqrt{3}\cos x+\sin x) $ is
[AMU 1999]
Options:
A) $ \exp (2) $
B) $ \exp (2-\sqrt{3}) $
C) $ \exp (4) $
D) 1
Show Answer
Answer:
Correct Answer: C
Solution:
Let $ y=\exp (2+\sqrt{3}\cos x+\sin x) $
therefore   $ {y}’=\exp (2+\sqrt{3}\cos x+\sin x),(-\sqrt{3}\sin x+\cos x) $         
Now  $ {y}’=0 $
therefore $ -\sqrt{3}\sin x+\cos x=0 $
therefore $ \sin ( x-\frac{\pi }{6} )=0 $
therefore   $ x=\frac{\pi }{6} $         
Now  $ {y}’’ $  is -ve at  $ x=\frac{\pi }{6} $         
\Maximum value of                
$ y=\exp ,( 2+\sqrt{3}( \frac{\sqrt{3}}{2} )+\frac{1}{2} ) $ =  $ \exp (4) $ .
 BETA
  BETA 
             
             
           
           
           
          