Applications Of Derivatives Question 242

Question: The function f defined by $ f(x)=(x+2){e^{-x}} $ is

[IIT Screening 1994]

Options:

A) Decreasing for all x

B) Decreasing in $ (-\infty ,,-1) $ and increasing in $ (-1,\infty ) $

C) Increasing for all x

D) Decreasing in $ (-1,,\infty ) $ and increasing in $ (-\infty ,,-1) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=(x+2){e^{-x}} $

$ f’(x)={e^{-x}}-{e^{-x}}(x+2) $

$ f’(x)=-{e^{-x}}[x+1] $

For increasing, $ -{e^{-x}}(x+1)>0 $ or $ {e^{-x}}(x+1)<0 $

$ {e^{-x}}>0 $

$ (x+1)<0 $

$ x\in (-\infty ,,\infty ) $ and $ x\in (-\infty ,-1) $

$ \therefore x\in (-\infty ,-1) $

Hence, the function is increasing in $ (-\infty ,,-1) $

For decreasing, $ -{e^{-x}}(x+1)<0 $ or $ {e^{-x}}(x+1)>0 $ , $ x\in (-1,,\infty ) $

Hence the function is decreasing in $ (-1,\ \infty ) $ .