Applications Of Derivatives Question 243

Question: If $ f(x)=x^{3}-10x^{2}+200x-10 $ , then

[Kurukshetra CEE 1998]

Options:

A) $ f(x) $ is decreasing in $ ]-\infty ,10] $ and increasing in $ [10,,\infty [ $

B) $ f(x) $ is increasing in $ ]-\infty ,10] $ and decreasing in $ [10,,\infty [ $

C) $ f(x) $ is increasing throughout real line

D) $ f(x) $ is decreasing throughout real line

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=x^{3}-10x^{2}+200x-10 $

$ f’(x)=3x^{2}-20x+200 $

For increasing $ f’(x)>0 $

therefore $ 3x^{2}-20x+200>0 $

$ 3[ x^{2}-\frac{20}{3}x+\frac{200}{3}+\frac{100}{9}-\frac{100}{9} ]>0 $

$ \Rightarrow 3[ {{( x-\frac{10}{3} )}^{2}}+\frac{500}{9} ]>0 $

$ \Rightarrow 3{{( x-\frac{10}{3} )}^{2}}+\frac{500}{3}>0 $

Always increasing throughout real line.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें