Applications Of Derivatives Question 245

Question: If $ f(x)=\frac{x}{\sin x} $ and $ g(x)=\frac{x}{\tan x} $ , where $ 0<x\le 1 $ , then in this interval

[IIT 1997 Re-Exam]

Options:

A) Both $ f(x) $ and $ g(x) $ are increasing functions

B) Both $ f(x) $ and $ g(x) $ are decreasing functions

C) $ f(x) $ is an increasing function

D) $ g(x) $ is an increasing function

Show Answer

Answer:

Correct Answer: C

Solution:

$ f’(x)=\frac{\sin x-x\cos x}{{{\sin }^{2}}x}=\frac{\cos x(\tan x-x)}{{{\sin }^{2}}x} $

$ 0<x\le 1\Rightarrow x\in Q_1\Rightarrow \tan x>x,\cos x>0 $

$ \therefore f’(x)>0 $ for $ 0<x\le 1 $

$ \therefore $ $ f(x) $ is an increasing function. $ g’(x)=\frac{\tan x-x{{\sec }^{2}}x}{{{\tan }^{2}}x}=\frac{\sin x\cos x-x}{{{\sin }^{2}}x}=\frac{\sin 2x-2x}{2{{\sin }^{2}}x} $

$ (\sin 2x-2x)’=2\cos 2x-2=2[\cos 2x-1]<0 $

therefore $ \sin 2x-2x $ is decreasing

therefore $ \sin 2x-2x<0 $

$ \therefore $ $ g’(x)<0\Rightarrow g(x) $ is decreasing.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें