Applications Of Derivatives Question 246

Question: A particle is moving on a straight line, where its position s (in metre) is a function of time t (in seconds) given by $ s=at^{2}+bt+6,t\ge 0 $ . If it is known that the particle comes to rest after 4 seconds at a distance of 16 metre from the starting position $ (t=0) $ , then the retardation in its motion is

[MP PET 1993]

Options:

A) $ -1m/{{\sec }^{2}} $

B) $ \frac{5}{4}m/{{\sec }^{2}} $

C) $ -\frac{1}{2}m/{{\sec }^{2}} $

D) $ -\frac{5}{4}m/{{\sec }^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

Given equation $ s=at^{2}+bt+6 $ –(i)

Differentiating w.r.t. time, we get Velocity (v) $ =2at+b $ –(ii)

After 4sec, $ v=0 $ and distance $ s=16,metres $

$ \therefore 0=2a\times 4+b\Rightarrow 8a+b=0 $ …………..(iii) and $ 16=16a+4b+6 $

therefore $ 16=16a+4(-8a)+6 $

$ \therefore $ $ a=-\frac{5}{8} $ But retardation in its motion is, $ 2a=\frac{-5}{4}m/{{\sec }^{2}} $

$ \therefore $ Retardation $ =\frac{5}{4}m/s^{2} $ (Retardation itself means -ve).