Applications Of Derivatives Question 247

Question: Function $ f(x)=2x^{3}-9x^{2}+12x+29 $ is monotonically decreasing, when

[RPET 1996]

Options:

A) $ x<2 $

B) x > 2

C) x >1

D) 1< x < 2

Show Answer

Answer:

Correct Answer: D

Solution:

Function is monotonically decreasing, when $ {f}’(x)<0 $

therefore $ 6x^{2}-18x+12<0 $

therefore $ x^{2}-3x+2<0 $

therefore $ x^{2}-2x-x+2<0 $

therefore $ (x-2)(x-1)<0 $ ,
$ \therefore x\in 1<x<2 $ .