Applications Of Derivatives Question 251

Question: The function $ f(x)=1-{e^{-x^{2}/2}} $ is

[AMU 1999]

Options:

A) Decreasing for all x

B) Increasing for all x

C) Decreasing for $ x<0 $ and increasing for $ x>0 $

D) Increasing for $ x<0 $ and decreasing for $ x>0 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=1-{e^{-x^{2}/2}} $

$ {f}’(x)=-{e^{-x^{2}/2}}(-x)=x{e^{-x^{2}/2}} $

For $ f(x) $ to be increasing, $ {f}’(x)>0 $

therefore $ x{e^{-x^{2}/2}}>0 $

therefore $ x>0 $ and $ f(x) $ to be decreasing for $ x<0 $ .