Applications Of Derivatives Question 255

Question: Function $ f(x)=\frac{\lambda \sin x+6\cos x}{2\sin x+3\cos x} $ is monotonic increasing, if

[MP PET 2001]

Options:

A) $ \lambda >1 $

B) $ \lambda <1 $

C) $ \lambda <4 $

D) $ \lambda >4 $

Show Answer

Answer:

Correct Answer: D

Solution:

The function is monotonic increasing, if $ {f}’(x)>0 $

therefore $ \frac{(2\sin x+3\cos x),(\lambda \cos x-6\sin x)}{{{(2\sin x+3\cos x)}^{2}}} $

$ -\frac{(\lambda \sin x+6\cos x)(2\cos x-3\sin x)}{{{(2\sin x+3\cos x)}^{2}}}>0 $

therefore $ 3\lambda ({{\sin }^{2}}x+{{\cos }^{2}}x)-12({{\sin }^{2}}x+{{\cos }^{2}}x)>0 $

therefore $ 3\lambda -12>0 $

therefore $ \lambda >4. $