Applications Of Derivatives Question 256

Question: 20 is divided into two parts so that product of cube of one quantity and square of the other quantity is maximum. The parts are

[RPET 1997]

Options:

A) 10, 10

B) 16, 4

C) 8, 12

D) 12, 8

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ x+y=20\Rightarrow y=20-x $ and $ x^{3}.y^{2}=z\Rightarrow z=x^{3}.y^{2} $

$ z=x^{3}{{(20-x)}^{2}} $

therefore $ z=400x^{3}+x^{5}-40x^{4} $

$ \frac{dz}{dx}=1200x^{2}+5x^{4}-160x^{3} $

Now $ \frac{dz}{dx}=0 $ , then $ x=12,\ 20 $

Now $ \frac{d^{2}z}{dx^{2}}=2400x+16x^{3}-480x^{2} $ ; $ {{( \frac{d^{2}z}{dx^{2}} )}_{x=12}}=-ive $

Hence $ x=12 $ is the point of maxima
$ \therefore x=12,\ \ y=8 $ .