Applications Of Derivatives Question 257

Question: If $ 2a+3b+6c=0, $ then at least one root of the equation $ ax^{2}+bx+c=0 $ lies in the interval

Options:

A) (0, 1)

B) (1, 3)

C) (2, 3)

D) (1, 3)

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let $ f’(x)=ax^{2}+bx+c $

$ \Rightarrow f(x)=\frac{ax^{3}}{3}+\frac{bx^{2}}{2}+cx+d $

$ \Rightarrow f(x)=\frac{2ax^{3}+3bx^{2}+6cx+6d}{6} $

$ \therefore f(1)=\frac{2a+3b+6c+6d}{6}=\frac{6d}{6}=d $

$ (\therefore 2a+3b+6c=0) $ And $ f(0)=d $ So from Rolle’s Theorem there exists at least one a in (0, 1).

For which $ f’(x)=0. $ Or there is at least one root of $ ax^{2}+bx+c=0 $ in (0, 1).