Applications Of Derivatives Question 259

Question: If $ f(x)=\sin x-\cos x, $ the function decreasing in $ 0\le x\le 2\pi $ is

[UPSEAT 2001]

Options:

A) $ [5\pi /6,,3\pi /4] $

B) $ [\pi /4,,\pi /2] $

C) $ [3\pi /2,,5\pi /2] $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=\sin x-\cos x $

$ {f}’(x)=\cos x+\sin x=\sqrt{2}[ \cos ( x-\frac{\pi }{4} ) ] $ = $ \sqrt{2}\cos ( x-\frac{\pi }{4} ) $

For $ f(x) $ decreasing, $ {f}’(x)<0 $

$ \frac{\pi }{2}<( x-\frac{\pi }{4} )<\frac{3\pi }{2} $ , (within $ 0\le x\le 2\pi $ ).

therefore $ \frac{3\pi }{4}<x\le \frac{7\pi }{4} $ .