Applications Of Derivatives Question 261

Question: If $ f(x)=x{e^{x(1-x)}} $ , then $ f(x) $ is

[IIT Screening 2001]

Options:

A) Increasing on $ [ -\frac{1}{2},,1 ] $

B) Decreasing on R

C) Increasing on R

D) Decreasing on $ [ -\frac{1}{2},1 ] $

Show Answer

Answer:

Correct Answer: A

Solution:

$ {f}’(x)={e^{x(1-x)}}+x.{e^{x(1-x)}}.(1-2x) $

$ ={e^{x(1-x)}}{1+x(1-2x)}={e^{x(1-x)}}.(-2x^{2}+x+1) $

Now by the sign-scheme for $ -2x^{2}+x+1 $

$ {f}’(x)\ge 0, $ if $ x,\in ,[ -\frac{1}{2},,1 ], $ because $ e^{x}(1-x) $ is always positive. So, $ f(x) $ is increasing on $ [ -\frac{1}{2},,1 ] $ .