Applications Of Derivatives Question 261

Question: If $ f(x)=x{e^{x(1-x)}} $ , then $ f(x) $ is

[IIT Screening 2001]

Options:

A) Increasing on $ [ -\frac{1}{2},,1 ] $

B) Decreasing on R

C) Increasing on R

D) Decreasing on $ [ -\frac{1}{2},1 ] $

Show Answer

Answer:

Correct Answer: A

Solution:

$ {f}’(x)={e^{x(1-x)}}+x.{e^{x(1-x)}}.(1-2x) $

$ ={e^{x(1-x)}}{1+x(1-2x)}={e^{x(1-x)}}.(-2x^{2}+x+1) $

Now by the sign-scheme for $ -2x^{2}+x+1 $

$ {f}’(x)\ge 0, $ if $ x,\in ,[ -\frac{1}{2},,1 ], $ because $ e^{x}(1-x) $ is always positive. So, $ f(x) $ is increasing on $ [ -\frac{1}{2},,1 ] $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें