Applications Of Derivatives Question 262

Question: If $ f(x)=x^{3}-6x^{2}+9x+3 $ be a decreasing function, then x lies in

[RPET 2002]

Options:

A) $ (-\infty ,-1)\cap (3,,\infty ) $

B) $ (1,3) $

C) $ (3,\infty ) $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)=x^{3}-6x^{2}+9x+3 $ , For decreasing $ {f}’(x)<0 $

therefore $ 3x^{2}-12x+9<0 $

therefore $ x^{2}-4x+3<0 $

therefore $ (x-3)(x-1)<0 $ , \ $ x\in (1,,3) $ .