Applications Of Derivatives Question 263

Question: If $ f(x)=\frac{1}{x+1}-\log ,(1+x),,x>0, $ then $ f $ is

[RPET 2002]

Options:

A) An increasing function

B) A decreasing function

C) Both increasing and decreasing function

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)=\frac{1}{x+1}-\log (1+x) $

therefore $ {f}’(x)=-\frac{1}{{{(x+1)}^{2}}},-,\frac{1}{1+x} $

$ {f}’(x)=-[ \frac{1}{x+1}+\frac{1}{{{(x+1)}^{2}}} ] $

$ {f}’(x)=-ve $ , when $ x>0 $ or $ {f}’(x)<0 $ , $ \forall x>0 $ \ $ f(x) $ is decreasing function.