Applications Of Derivatives Question 266

Question: If the function $ f(x)=x^{3}-6ax^{2}+5x $ satisfies the conditions of Lagrange’s mean value theorem for the interval [1, 2] and the tangent to the curve $ y=f(x) $ at $ x=\frac{7}{4} $ is parallel to the chord that joins the points of intersection of the curve with the ordinates $ x=1 $ and $ x=2 $ . Then the value of $ a $ is

[MP PET 1998]

Options:

A) $ \frac{35}{16} $

B) $ \frac{35}{48} $

C) $ \frac{7}{16} $

D) $ \frac{5}{16} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(b)=f(2)=8-24a+10=18-24a $

$ f(a)=f(1)=1-6a+5=6-6a $

$ f’(x)=3x^{2}-12ax+5 $
From Lagrange’s mean value theorem,
$ f’(x)=\frac{f(b)-f(a)}{b-a} $

$ =\frac{18-24a-6+6a}{2-1} $

$ \therefore f’(x)=12-18a $
At $ x=\frac{7}{4},\ 3\times \frac{49}{16}-12a\times \frac{7}{4}+5=12-18a $

therefore $ 3a=\frac{147}{16}-7 $

therefore $ 3a=\frac{35}{16} $

therefore $ a=\frac{35}{48} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें