Applications Of Derivatives Question 268

Question: A point on the parabola $ y^{2}=18x $ at which the ordinate increases at twice the rate of the abscissa is

Options:

A) (2, 4)

B) (2, -4)

C) $ ( \frac{-9}{8},\frac{9}{2} ) $

D) $ ( \frac{9}{8},\frac{9}{2} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] The equation of the parabola is $ y^{2}=18x $ . Differentiating w.r.t. t, we get $ 2y\frac{dy}{dt}=18\frac{dx}{dt} $

$ \Rightarrow 2\times 2y=18 $

$ ( \therefore \frac{dy}{dt}=2\frac{dx}{dt} ) $

$ \Rightarrow y=\frac{9}{2} $ From the equation of the parabola, we get $ {{( \frac{9}{2} )}^{2}}=18x $

$ \Rightarrow \frac{81}{4}=18x $

$ \Rightarrow x=\frac{81}{4\times 18} $

$ \Rightarrow x=\frac{9}{8} $

Hence, the point is $ (9\text{/}8,,9\text{/}2) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें