Applications Of Derivatives Question 268

Question: A point on the parabola $ y^{2}=18x $ at which the ordinate increases at twice the rate of the abscissa is

Options:

A) (2, 4)

B) (2, -4)

C) $ ( \frac{-9}{8},\frac{9}{2} ) $

D) $ ( \frac{9}{8},\frac{9}{2} ) $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] The equation of the parabola is $ y^{2}=18x $ . Differentiating w.r.t. t, we get $ 2y\frac{dy}{dt}=18\frac{dx}{dt} $

$ \Rightarrow 2\times 2y=18 $

$ ( \therefore \frac{dy}{dt}=2\frac{dx}{dt} ) $

$ \Rightarrow y=\frac{9}{2} $ From the equation of the parabola, we get $ {{( \frac{9}{2} )}^{2}}=18x $

$ \Rightarrow \frac{81}{4}=18x $

$ \Rightarrow x=\frac{81}{4\times 18} $

$ \Rightarrow x=\frac{9}{8} $

Hence, the point is $ (9\text{/}8,,9\text{/}2) $ .