Applications Of Derivatives Question 269

Question: If $ f(x)=\frac{x^{2}-1}{x^{2}+1} $ , for every real number x, then the minimum value of f

[IIT 1998]

Options:

A) Does not exist because f is unbounded

B) Is not attained even though f is bounded

C) Is equal to 1

D) Is equal to -1

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=\frac{x^{2}-1}{x^{2}+1}=\frac{x^{2}+1-2}{x^{2}+1}=1-\frac{2}{x^{2}+1} $

$ \therefore f(x)<1\forall x $ and $ \ge -1 $ as $ \frac{2}{x^{2}+1}\le 2 $

$ \therefore -1\le f(x)<1 $

Hence $ f(x) $ has minimum value -1 and also there is no maximum value. Aliter : $ {f}’(x)=\frac{(x^{2}+1)2x-(x^{2}-1)2x}{{{(x^{2}+1)}^{2}}}=\frac{4x}{{{(x^{2}+1)}^{2}}} $

$ {f}’(x)=0\Rightarrow x=0 $

$ {f}’’,(x)=\frac{{{(x^{2}+1)}^{2}}4-4x.2(x^{2}+1)2x}{{{(x^{2}+1)}^{4}}} $

$ =\frac{(x^{2}+1)4-16x(x)}{{{(x^{2}+1)}^{3}}}=\frac{-12x^{2}+4}{{{(x^{2}+1)}^{3}}} $

$ \therefore {f}’’(0)>0 $

$ \therefore $ There is only one critical point having minima.

Hence $ f(x) $ has least value at $ x=0 $ . $ {f _{\min }}=f(0)=\frac{-1}{1}=-1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें