Applications Of Derivatives Question 271

Question: The function $ x^{x} $ is increasing, when

[MP PET 2003]

Options:

A) $ x>\frac{1}{e} $

B) $ x<\frac{1}{e} $

C) $ x<0 $

D) For all real x

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ y=x^{x} $

therefore $ \frac{dy}{dx}=x^{x}(1+\log x) $ For $ \frac{dy}{dx}>0 $ ; $ x^{x}(1+\log x)>0 $

therefore $ 1+\log x>0\Rightarrow {\log_{e}}x>{\log_{e}}\frac{1}{e} $

For this to be positive, x should be greater than $ \frac{1}{e} $ .