Applications Of Derivatives Question 28

Question: The approximate value of $ {{(0.007)}^{1/3}} $

Options:

A) $ \frac{23}{120} $

B) $ \frac{27}{120} $

C) $ \frac{19}{120} $

D) $ \frac{17}{120} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let $ f(x)={x^{1/3}}\Rightarrow f’(x)=\frac{1}{3}{x^{-2/3}} $ Now $ f(x+\Delta x)-f(x)=f’(x)\cdot \Delta x=\frac{\Delta x}{3({x^{2/3}})} $ We may write, $ 0.007=0.008-0.001 $ , taking. $ x=0.008 $ and $ dx=-0.001. $ We have $ f(0.007)-f(0.008)=-\frac{0.001}{3{{(0.008)}^{2/3}}} $

$ \Rightarrow f(0.007)-{{(0.008)}^{1/3}}=-\frac{0.001}{3{{(0.2)}^{2}}} $

$ \Rightarrow f(0.007)=0.2-\frac{0.001}{3(0.04)}=0.2-\frac{1}{120}=\frac{23}{120} $

Hence $ {{(0.007)}^{1/3}}=\frac{23}{120} $