Applications Of Derivatives Question 283

Question: Given function $ f(x)=( \frac{e^{2x}-1}{e^{2x}+1} ) $ is

[Orissa JEE 2005]

Options:

A) Increasing

B) Decreasing

C) Even

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=\frac{e^{2x}-1}{e^{2x}+1} $

therefore (i) $ f(-x)=\frac{{e^{-2x}}-1}{{e^{-2x}}+1}=\frac{1-e^{2x}}{1+e^{2x}} $

therefore $ f(x)=-\frac{e^{2x}-1}{e^{2x}+1}=-f(x) $

$ f(x) $ is an odd function.

Again $ f(x)=\frac{e^{2x}-1}{e^{2x}+1}\Rightarrow {f}’(x)=\frac{4e^{2x}}{{{(1+e^{2x})}^{2}}}>0,\forall ,n\in R $

therefore $ f(x) $ is an increasing function.