Applications Of Derivatives Question 284

Question: Function $ f(x)=\frac{4x^{2}+1}{x} $ is decreasing for interval

Options:

A) $ ( \frac{-1}{2},,\frac{1}{2} ) $

B) $ [ \frac{1}{2},,-\frac{1}{2} ] $

C) (- 1, 1)

D) [1, -1]

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)=4x+\frac{1}{x} $

$ \frac{d}{dx}f(x)=\frac{d}{dx}[ 4x+\frac{1}{x} ] $ = $ 4-\frac{1}{x^{2}} $

For extremum, $ \frac{dy}{dx}=0 $

therefore $ 4-\frac{1}{x^{2}}=0 $

therefore $ x=\frac{1}{2},,-\frac{1}{2} $

$ f\ ( \frac{1}{2} )=4.\frac{1}{2}+\frac{1}{1/2} $ = $ 2+2=4 $

$ f\ ( -\frac{1}{2} )=4.( -\frac{1}{2} )+\frac{1}{-1/2}=-2-2=-4 $

Hence $ f(x) $ is decreasing in interval $ [1/2,,-1/2] $ .