Applications Of Derivatives Question 286

Question: The value of the function $ (x-1){{(x-2)}^{2}} $ at its maxima is

Options:

A) 1

B) 2

C) 0

D) $ \frac{4}{27} $

Show Answer

Answer:

Correct Answer: D

Solution:

Given $ f(x)=(x-1){{(x-2)}^{2}} $

$ f(x)=(x-1)(x^{2}+4-4x) $ ; $ f(x)=(x^{3}-5x^{2}+8x-4) $ Now $ f’(x)=3x^{2}-10x+8 $ , $ f’(x)=0 $

therefore $ 3x^{2}-10x+8=0 $

therefore $ (3x-4)(x-2)=0 $

therefore $ x=\frac{4}{3} $ , 2

Now $ {f}’’(x)=6x-10 $

$ {f}’’(4/3)=6\times 4/3-10<0 $

$ {f}’’(2)=12-10>0 $

Hence at $ x=\frac{4}{3} $ the function will occupy maximum value.
$ \therefore $ Maximum value = $ f(4/3)=4/27 $ .