Applications Of Derivatives Question 298

Question: Local maximum value of the function $ \frac{\log x}{x} $ is

[MNR 1984; RPET 1997, 2002; DCE 2002; Karnataka CET 2000; UPSEAT 2001; MP PET 2002]

Options:

A) e

B) 1

C) $ \frac{1}{e} $

D) 2e

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ f(x)=\frac{\log x}{x}\Rightarrow f’(x)=\frac{1}{x^{2}}-\frac{\log x}{x^{2}} $

For maximum or minimum value of $ f(x),f’(x)=0 $

therefore $ f’(x)=\frac{1-{\log_{e}}x}{x^{2}}=0 $ or $ \frac{1-{\log_{e}}x}{x^{2}}=0 $

$ \therefore {\log_{e}}x=1 $ or $ x=e $ , which lie in $ (0,\infty ) $ .

For $ x=e,\frac{d^{2}y}{dx^{2}}=-\frac{1}{e^{3}} $ , which is $ -ve $ .

Hence y is maximum at $ x=e $ and its maximum value $ =\frac{\log e}{e}=\frac{1}{e} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें