Applications Of Derivatives Question 299

Question: If $ x+y=16 $ and $ x^{2}+y^{2} $ is minimum, then the values of x and y are

Options:

A) 3, 13

B) 4, 12

C) 6, 10

D) 8, 8

Show Answer

Answer:

Correct Answer: D

Solution:

$ x+y=16\Rightarrow y=16-x $

therefore $ x^{2}+y^{2}=x^{2}+{{(16-x)}^{2}} $

Let $ z=x^{2}+{{(16-x)}^{2}}\Rightarrow z’=4x-32 $

To be minimum of $ z,z’’>0 $ , and it is.

Therefore $ 4x-32=0\Rightarrow x=8\Rightarrow y=8 $