Applications Of Derivatives Question 3

Question: The function $ f(x)=2\log (x-2)-x^{2}+4x+1 $ increases on the interval

Options:

A) (1, 2)

B) (2, 3)

C) (1/2, 3)

D) (2, 4)

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ f(x)=2\log (x-2)-x^{2}+4x+1\Rightarrow f’(x) $

$ =\frac{2}{x-2}-2x+4 $

$ \Rightarrow f’(x)=2[ \frac{1-{{(x-2)}^{2}}}{x-2} ]=-2\frac{(x-1)(x-3)}{x-2} $

$ \Rightarrow f’(x)=\frac{2(x-1)(x-3)(x-2)}{{{(x-2)}^{2}}} $

$ \therefore f’(x)>0\Rightarrow -2(x-1)(x-3)(x-2)>0 $

$ \Rightarrow (x-1)(x-2)(x-3)<0\Rightarrow x\in (-\infty ,1)\cup (2,3) $ Thus, f(x) is increasing on $ (-\infty ,1)\cup (2,3) $ . Clearly, it includes answer [b] and (c).