Applications Of Derivatives Question 300

Question: The function $ x\sqrt{1-x^{2}},(x>0) $ has

Options:

A) A local maxima

B) A local minima

C) Neither a local maxima nor a local minima

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ f(x)=x\sqrt{1-x^{2}} $

therefore $ f’(x)=\frac{1-2x^{2}}{\sqrt{1-x^{2}}}=0\Rightarrow x=\pm \frac{1}{\sqrt{2}} $

But as $ x>0 $ , we have $ x=\frac{1}{\sqrt{2}} $

Now, again $ {f}’’(x)=\frac{\sqrt{1-x^{2}}(-4x)-(1-2x^{2})\frac{-x}{\sqrt{1-x^{2}}}}{(1-x^{2})} $

$ =\frac{2x^{3}-3x}{{{(1-x^{2})}^{3/2}}} $

$ \Rightarrow {f}’’( \frac{1}{\sqrt{2}} )=-ve $ . Then $ f(x) $ is maximum at $ x=\frac{1}{\sqrt{2}} $ .