Applications Of Derivatives Question 305

Question: The minimum value of $ {e^{(2x^{2}-2x+1){{\sin }^{2}}x}} $ is

[Roorkee Qualifying 1998]

Options:

A) e

B) 1/e

C) 1

D) 0

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ y={e^{(2x^{2}-2x+1){{\sin }^{2}}x}} $ For minima or maxima, $ \frac{dy}{dx}=0 $

$ \therefore {e^{(2x^{2}-2x+1){{\sin }^{2}}x}}[(4x-2){{\sin }^{2}}x+2(2x^{2}-2x+1)\sin x\cos x]=0 $

therefore $ [(4x-2){{\sin }^{2}}x+2(2x^{2}-2x+1)\sin x\cos x]=0 $

therefore $ 2\sin x[(2x-1)\sin x+(2x^{2}-2x+1)\cos x]=0 $

therefore $ \sin x=0 $

$ \therefore y $ is minimum for $ \sin x=0 $ Thus minimum value of $ y={e^{(2x^{2}-2x+1)(0)}}=e^{0}=1 $ .