Applications Of Derivatives Question 307

Question: x and y be two variables such that $ x>0 $ and $ xy=1 $ . Then the minimum value of $ x+y $ is

[Kurukshetra CEE 1998; MP PET 2002]

Options:

A) 2

B) 3

C) 4

D) 0

Show Answer

Answer:

Correct Answer: A

Solution:

$ xy=1\Rightarrow y=\frac{1}{x} $ and let $ z=x+y $

$ z=x+\frac{1}{x}\Rightarrow \frac{dz}{dx}=1-\frac{1}{x^{2}} $

Now $ \frac{dz}{dx}=0\Rightarrow 1-\frac{1}{x^{2}}=0 $

$ x=-1,,+1 $ and $ \frac{d^{2}z}{dx^{2}}=\frac{2}{x^{3}} $

$ {{( \frac{d^{2}z}{dx^{2}} )}_{x=1}}=\frac{2}{1}=2=+ive $

$ \therefore $

Hence $ x=1 $ is point of minima and $ x=1 $ and $ y=1 $

$ \therefore $ Minimum value $ =x+y=2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें