Applications Of Derivatives Question 307

Question: x and y be two variables such that $ x>0 $ and $ xy=1 $ . Then the minimum value of $ x+y $ is

[Kurukshetra CEE 1998; MP PET 2002]

Options:

A) 2

B) 3

C) 4

D) 0

Show Answer

Answer:

Correct Answer: A

Solution:

$ xy=1\Rightarrow y=\frac{1}{x} $ and let $ z=x+y $

$ z=x+\frac{1}{x}\Rightarrow \frac{dz}{dx}=1-\frac{1}{x^{2}} $

Now $ \frac{dz}{dx}=0\Rightarrow 1-\frac{1}{x^{2}}=0 $

$ x=-1,,+1 $ and $ \frac{d^{2}z}{dx^{2}}=\frac{2}{x^{3}} $

$ {{( \frac{d^{2}z}{dx^{2}} )}_{x=1}}=\frac{2}{1}=2=+ive $

$ \therefore $

Hence $ x=1 $ is point of minima and $ x=1 $ and $ y=1 $

$ \therefore $ Minimum value $ =x+y=2 $ .