Applications Of Derivatives Question 309

Question: What are the minimum and maximum values of the function $ x^{5}-5x^{4}+5x^{3}-10 $

[DCE 1999]

Options:

A) - 37, - 9

B) 10, 0

C) It has 2 min. and 1 max. values

D) It has 2 max. and 1 min. values

Show Answer

Answer:

Correct Answer: A

Solution:

$ y=x^{5}-5x^{4}+5x^{3}-10 $ \ $ \frac{dy}{dx}=5x^{4}-20x^{3}+15x^{2} $

$ =5x^{2}(x^{2}-4x+3) $

$ =5x^{2}(x-3),(x-1) $

$ \frac{dy}{dx}=0 $ , gives $ x=0,,1,,3 $

Now, $ \frac{d^{2}y}{dx^{2}}=20x^{3}-60x^{2}+30x $ = $ 10x(2x^{2}-6x+3) $ and $ \frac{d^{3}y}{dx^{3}}=10(6x^{2}-12x+3) $

For $ x=0 $ : $ \frac{dy}{dx}=0,,\frac{d^{2}y}{dx^{2}}=0,,\frac{d^{3}y}{dx^{3}}\ne 0 $ \

Neither minimum nor maximum

For $ x=1,,\frac{d^{2}y}{dx^{2}}=-10=negative $ . \ Maximum value $ {y_{max\text{.}}}=-9 $

For $ x=3,,\frac{d^{2}y}{dx^{2}}=90=positive $ \ Minimum value $ {y_{min\text{.}}}=-37 $ .