Applications Of Derivatives Question 309

Question: What are the minimum and maximum values of the function $ x^{5}-5x^{4}+5x^{3}-10 $

[DCE 1999]

Options:

A) - 37, - 9

B) 10, 0

C) It has 2 min. and 1 max. values

D) It has 2 max. and 1 min. values

Show Answer

Answer:

Correct Answer: A

Solution:

$ y=x^{5}-5x^{4}+5x^{3}-10 $ \ $ \frac{dy}{dx}=5x^{4}-20x^{3}+15x^{2} $

$ =5x^{2}(x^{2}-4x+3) $

$ =5x^{2}(x-3),(x-1) $

$ \frac{dy}{dx}=0 $ , gives $ x=0,,1,,3 $

Now, $ \frac{d^{2}y}{dx^{2}}=20x^{3}-60x^{2}+30x $ = $ 10x(2x^{2}-6x+3) $ and $ \frac{d^{3}y}{dx^{3}}=10(6x^{2}-12x+3) $

For $ x=0 $ : $ \frac{dy}{dx}=0,,\frac{d^{2}y}{dx^{2}}=0,,\frac{d^{3}y}{dx^{3}}\ne 0 $ \

Neither minimum nor maximum

For $ x=1,,\frac{d^{2}y}{dx^{2}}=-10=negative $ . \ Maximum value $ {y_{max\text{.}}}=-9 $

For $ x=3,,\frac{d^{2}y}{dx^{2}}=90=positive $ \ Minimum value $ {y_{min\text{.}}}=-37 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें