Applications Of Derivatives Question 310

Question: Divide 20 into two parts such that the product of one part and the cube of the other is maximum. The two parts are

[DCE 1999]

Options:

A) (10, 10)

B) $ (5,15) $

C) (13, 7)

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ x+y=20 $ and $ z=xy^{3} $

therefore $ z=y^{3}(20-y)=20y^{3}-y^{4} $

therefore $ \frac{dz}{dy}=60y^{2}-4y^{3}=0 $

therefore $ 4y^{2}(15-y)=0 $

So, either $ y=0,, $ or $ y=15 $

Now, $ \frac{d^{2}z}{dy^{2}}=120y-12y^{2} $ ; At $ y=0,\frac{d^{2}z}{dy^{2}}>0 $ $ y=0 $ is the point of minima and at $ y=15,\frac{d^{2}z}{dy^{2}}<0 $ $ y=15 $ is the point of maxima.

Hence the required parts is (5, 15).