Applications Of Derivatives Question 311

Question: The maximum and minimum values of $ x^{3}-18x^{2}+96x $ in interval (0, 9) are

[RPET 1999]

Options:

A) 160, 0

B) 60, 0

C) 160, 128

D) 120, 28

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ y=x^{3}-18x^{2}+96x $

therefore $ \frac{dy}{dx}=3x^{2}-36x+96=0 $

$ x^{2}-12x+32=0\Rightarrow (x-4),(x-8)=0 $ , $ x=4,,8 $

Now, $ \frac{d^{2}y}{dx^{2}}=6x-36 $

At $ x=4,\frac{d^{2}y}{dx^{2}}=24-36=-12<0 $

At $ x=4 $ function will be maximum

and $ {{[f(4)]} _{max\text{.}}}=64-288+384=160 $

At $ x=8 $ , $ \frac{d^{2}y}{dx^{2}}=48-36=12>0 $ At $ x=8 $ ,

function will be minimum and $ {{[f(8)]} _{min\text{.}}}=128. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें