Applications Of Derivatives Question 314

Question: The maximum value of $ \sin x(1+\cos x) $ will be at the

[UPSEAT 1999]

Options:

A) $ x=\frac{\pi }{2} $

B) $ x=\frac{\pi }{6} $

C) $ x=\frac{\pi }{3} $

D) $ x=\pi $

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=\sin x(1+\cos x) $

$ =\sin x+\frac{1}{2}\sin 2x $ $ \frac{dy}{dx}=\cos x+\cos 2x $ and $ \frac{d^{2}y}{dx^{2}}=-\sin x-2\sin 2x $

On putting $ \frac{dy}{dx}=0 $ , $ \cos x+\cos 2x=0 $

therefore $ \cos x=-\cos 2x=\cos (\pi -2x) $

therefore $ x=\pi -2x $ $ x=\frac{\pi }{3} $ ; $ {{( \frac{d^{2}y}{dx^{2}} )}_{x=\pi /3}}=-\sin ( \frac{1}{3}\pi )-2\sin ( \frac{2}{3}\pi ) $ = $ \frac{-\sqrt{3}}{2}-2.\frac{\sqrt{3}}{2} $ = $ \frac{-3\sqrt{3}}{2} $ , which is negative.

At $ x=\frac{\pi }{3} $ the function is maximum.