Applications Of Derivatives Question 318

Question: The minimum value of $ \frac{\log x}{x} $ in the interval $ [2,,\infty ) $ is [Roorkee 1999]

Options:

A) $ \frac{\log 2}{2} $

B) Zero

C) $ \frac{1}{e} $

D) Does not exist

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ y=\frac{\log x}{x} $

therefore $ \frac{dy}{dx}=\frac{x.\frac{1}{x}-\log x}{x^{2}} $

$ =\frac{1-\log x}{x^{2}} $ Put $ \frac{dy}{dx}=0\Rightarrow \frac{1-\log x}{x^{2}}=0 $

therefore $ 1-\log x=0 $

therefore $ x=e $ and $ \frac{d^{2}y}{dx^{2}}=\frac{-3x+2x\log x}{x^{4}} $ At $ x=e $ , $ \frac{d^{2}y}{dx^{2}}=\frac{-1}{e^{3}}<0 $ In [2, $\infty$) the function $ p^{2}=q $ will be maximum and minimum value does not exist.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें