Applications Of Derivatives Question 319

Question: The maximum value of $ x^{4}{e^{-x^{2}}} $ is

[AMU 1999]

Options:

A) $ e^{2} $

B) $ {e^{-2}} $

C) $ 12{e^{-2}} $

D) $ 4{e^{-2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=x^{4}{e^{-x^{2}}} $

therefore $ {f}’(x)=4x^{3}{e^{-x^{2}}}+x^{4}{e^{-x^{2}}}(-2x) $ For max., $ {f}’(x)=0 $

therefore $ 4x^{3}{e^{-x^{2}}}-2x^{5}{e^{-x^{2}}}=0 $

therefore $ x^{2}=2\Rightarrow x=\pm \sqrt{2} $

$ f’’(x)=12x^{2}{e^{-x^{2}}}+4x^{3}{e^{-x^{2}}}(-2x)-10x^{4}{e^{-x^{2}}}-2x^{5}{e^{-x^{2}}}(-2x) $

therefore $ {f}’’(\sqrt{2})=24{e^{-2}}-32{e^{-2}}-40{e^{-2}}+32{e^{-2}} $ = -ve

Hence, $ f(x) $ is max. at $ x=\sqrt{2} $

Maximum value = $ 4{e^{-2}} $ .