Applications Of Derivatives Question 32

Question: A stone thrown vertically upward satisfies the equation $ s=64t-16t^{2} $ , where s is in meter and t is in second. What is the time required to reach the maximum height-

Options:

A) 1s

B) 2s

C) 3s

D) 4s

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Given equation is $ s=64t-16t^{2} $

$ \therefore $ On differentiating w.r.t. t, we get $ \frac{ds}{dt}=64-32t $ Put $ \frac{ds}{dt}=0 $ for maximum height
$ \Rightarrow 64-32t=0 $

$ \Rightarrow t=2 $ Now, $ \frac{d^{2}s}{dt^{2}}=-32 $ At $ t=2,\frac{d^{2}s}{dt^{2}}=-32 $ Since, $ {{( \frac{d^{2}s}{dt^{2}} )}_{t=2}}<0 $

$ \therefore $ Required time = 2 second