Applications Of Derivatives Question 322

Question: The real number x when added to its inverse gives the minimum value of the sum at x equal to

[RPET 2000; AIEEE 2003]

Options:

A) - 2

B) 2

C) 1

D) - 1

Show Answer

Answer:

Correct Answer: C

Solution:

Let the positive number $ ( x+\frac{1}{x} ) $ will be minimum, when $ \frac{dy}{dx}=0 $ and $ \frac{d^{2}y}{dx^{2}}>0 $ .

Differentiate with respect to x, we have $ 1-\frac{1}{x^{2}}=0 $

therefore $ x=-1,,1 $ and $ \frac{d^{2}y}{dx^{2}}=+\frac{2}{x^{3}} $

therefore $ {{( \frac{d^{2}y}{dx^{2}} )}_{x=1}}>0 $

So, at $ x=1,,( x+\frac{1}{x} ) $ will be minimum.