Applications Of Derivatives Question 324

Question: The denominator of a fraction number is greater than 16 of the square of numerator, then least value of the number is

[RPET 2000]

Options:

A) $ -1/4 $

B) $ -1/8 $

C) $ 1/12 $

D) $ 1/16 $

Show Answer

Answer:

Correct Answer: B

Solution:

The function $ f(x)=\frac{x}{x^{2}+16} $

therefore $ {f}’(x)=\frac{(x^{2}+16).1-x.(2x)}{{{(x^{2}+16)}^{2}}} $ = $ \frac{x^{2}+16-2x^{2}}{{{(x^{2}+16)}^{2}}}=\frac{16-x^{2}}{{{(x^{2}+16)}^{2}}} $ –(i) Put $ {f}’(x)=0 $

therefore $ 16-x^{2}=0 $

therefore $ x=4,,-4 $

Again, $ f’’(x)=\frac{{{(x^{2}+16)}^{2}}(-2x)-(16-x^{2})2(x^{2}+16)2x}{{{(x^{2}+16)}^{4}}} $

At $ x=4 $ , $ {f}’’(x)>0 $ and at $ x=-4 $ , $ {f}’’(x)>0 $

Least value of $ f(x)=\frac{-4}{16+16}=-\frac{1}{8} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें