Applications Of Derivatives Question 325

Question: The real number which most exceeds its cube is

[MP PET 2000]

Options:

A) $ \frac{1}{2} $

B) $ \frac{1}{\sqrt{3}} $

C) $ \frac{1}{\sqrt{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let Number = x, then cube = $ x^{3} $

Now $ f(x)=x-x^{3} $ (Maximum)

therefore $ f’(x)=1-3x^{2} $ Put $ {f}’(x)=0 $

therefore $ 1-3x^{2}=0 $

therefore $ x=\pm \frac{1}{\sqrt{3}} $

Because $ {f}’’(x)=-6x=-ve. $ when $ x=+\frac{1}{\sqrt{3}} $ .