Applications Of Derivatives Question 326

Question: The maximum value of $ f(x)=\frac{x}{4+x+x^{2}} $ on $

[-1,,1] $ is [MP PET 2000]

Options:

A) $ -1/4 $

B) $ -1/3 $

C) $ 1/6 $

D) $ 1/5 $

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=\frac{x}{4+x+x^{2}} $

Differentiate, $ {f}’(x)=\frac{4+x+x^{2}-x(1+2x)}{{{(4+x+x^{2})}^{2}}} $

For maximum $ f’(x)=0 $

therefore $ \frac{4-x^{2}}{{{(4+x+x^{2})}^{2}}}=0 $

therefore $ x=2,,-2 $

Both values of x are out of interval

$ f(-1)=\frac{-1}{4-1+1}=\frac{-1}{4} $ , $ f(1)=\frac{1}{4+1+1}=\frac{1}{6} $ (maximum).