Applications Of Derivatives Question 328

Question: A cone of maximum volume is inscribed in a given sphere, then ratio of the height of the cone to diameter of the sphere is

[MNR 1985; UPSEAT 2000]

Options:

A) 2/3

B) 3/4

C) 1/3

D) ¼

Show Answer

Answer:

Correct Answer: A

Solution:

Let diameter of sphere $ AE=2r $

Let radius of cone is x and height is y $ AD=y $ , since $ BD^{2}=AD.DE $ or $ x^{2}=y(2r-y) $ –(i) Volume of cone $ V=\frac{1}{3}\pi x^{2}y=\frac{1}{3}\pi y(2r-y)y $

$ =\frac{1}{3}\pi (2ry^{2}-y^{3}) $

therefore $ \frac{dV}{dy}=\frac{1}{3}\pi (4ry-3y^{2}) $

therefore $ \frac{dV}{dy}=0 $

therefore $ \frac{1}{3}\pi (4ry-3y^{2})=0 $

therefore $ y(4r-3y)=0 $

therefore $ y=\frac{4}{3}r,,0 $

Now $ \frac{d^{2}V}{dy^{2}}=\frac{1}{3}\pi (4r-6y) $ , put $ y=\frac{4}{3}r $

therefore $ \frac{d^{2}V}{dy^{2}}=\frac{1}{3}\pi ,( 4r-6\times \frac{4}{3}r ) $ = negative value

So, volume of cone is maximum at $ y=\frac{4}{3}r $

therefore $ \frac{Height}{Diametre} $ = $ \frac{y}{2r}=\frac{2}{3} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें