Applications Of Derivatives Question 329

Question: The ratio of height of cone of maximum volume inscribed in a sphere to its radius is

[Orissa JEE 2004]

Options:

A) $ \frac{3}{4} $

B) $ \frac{4}{3} $

C) $ \frac{1}{2} $

D) $ \frac{2}{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let diameter of sphere $ AE=2r $

Let radius of cone is x and height is y $ AD=y $ since $ BD^{2}=AD.DE $ or $ x^{2}=y(2r-y) $ …..(i) Volume of cone $ V=\frac{1}{3}\pi x^{2}y=\frac{1}{3}\pi y(2r-y)y=\frac{1}{3}\pi (2ry^{2}-y^{3}) $

therefore $ \frac{dV}{dy}=\frac{1}{3}\pi (4ry-3y^{2}) $

therefore $ \frac{dV}{dy}=0 $

therefore $ \frac{1}{3}\pi (4ry-3y^{2})=0 $

therefore $ y(4r-3y)=0 $

therefore $ y=\frac{4}{3}r,,0 $

Now $ \frac{d^{2}V}{dy^{2}}=\frac{1}{3}\pi (4r-6y) $ , put $ y=\frac{4}{3}r $

therefore $ \frac{d^{2}V}{dy^{2}}=\frac{1}{3}\pi ,( 4r-6\times \frac{4}{3}r ) $ = negative value

So, volume of cone is maximum at $ y=\frac{4}{3}r $

therefore $ \frac{Height}{Radius} $ = $ \frac{y}{r}=\frac{4}{3} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें