Applications Of Derivatives Question 329

Question: The ratio of height of cone of maximum volume inscribed in a sphere to its radius is

[Orissa JEE 2004]

Options:

A) $ \frac{3}{4} $

B) $ \frac{4}{3} $

C) $ \frac{1}{2} $

D) $ \frac{2}{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let diameter of sphere $ AE=2r $

Let radius of cone is x and height is y $ AD=y $ since $ BD^{2}=AD.DE $ or $ x^{2}=y(2r-y) $ …..(i) Volume of cone $ V=\frac{1}{3}\pi x^{2}y=\frac{1}{3}\pi y(2r-y)y=\frac{1}{3}\pi (2ry^{2}-y^{3}) $

therefore $ \frac{dV}{dy}=\frac{1}{3}\pi (4ry-3y^{2}) $

therefore $ \frac{dV}{dy}=0 $

therefore $ \frac{1}{3}\pi (4ry-3y^{2})=0 $

therefore $ y(4r-3y)=0 $

therefore $ y=\frac{4}{3}r,,0 $

Now $ \frac{d^{2}V}{dy^{2}}=\frac{1}{3}\pi (4r-6y) $ , put $ y=\frac{4}{3}r $

therefore $ \frac{d^{2}V}{dy^{2}}=\frac{1}{3}\pi ,( 4r-6\times \frac{4}{3}r ) $ = negative value

So, volume of cone is maximum at $ y=\frac{4}{3}r $

therefore $ \frac{Height}{Radius} $ = $ \frac{y}{r}=\frac{4}{3} $ .