Applications Of Derivatives Question 331

Question: The function $ f(x)=x+\sin x $ has

[AMU 2000]

Options:

A) A minimum but no maximum

B) A maximum but no minimum

C) Neither maximum nor minimum

D) Both maximum and minimum

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=x+\sin x $

therefore $ {f}’(x)=1+\cos x $

Now $ {f}’(x)=0\Rightarrow 1+\cos x=0\Rightarrow \cos x=-1\Rightarrow x=\pi $

Now $ {f}’’(x)=-\sin x $ , $ {f}’’(\pi )=0 $ , $ f’’’(x)=-\cos x $ ,

$ {f}’’’(\pi )=1\ne 0 $ Neither maximum nor minimum.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें