Applications Of Derivatives Question 331

Question: The function $ f(x)=x+\sin x $ has

[AMU 2000]

Options:

A) A minimum but no maximum

B) A maximum but no minimum

C) Neither maximum nor minimum

D) Both maximum and minimum

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=x+\sin x $

therefore $ {f}’(x)=1+\cos x $

Now $ {f}’(x)=0\Rightarrow 1+\cos x=0\Rightarrow \cos x=-1\Rightarrow x=\pi $

Now $ {f}’’(x)=-\sin x $ , $ {f}’’(\pi )=0 $ , $ f’’’(x)=-\cos x $ ,

$ {f}’’’(\pi )=1\ne 0 $ Neither maximum nor minimum.